Many times, in our projects, we may need to compare different measured factors in our samples to one another, and study whether they are linearly dependent. These information can also help us to detect covariates and factors that affect our studies but we would like to adjust for/remove their effects (more on this at sometime later). Here, I mention several functions that can be used to perform correlation tests. All of these functions do support both Pearson and ranked (Spearman) methods. Note that in the end of this post I will focus on these two different methods (i.e. Pearson vs Spearman) and show their differences in application.
2
Labels
Blog Archive
About Me
About Me
My Photo
I am a Postdoc researcher at the Neuromuscular Disorders Research lab and Genetic Determinants of Osteoporosis Research lab, in University of Helsinki and Folkhälsan RC. I specialize in Bioinformatics. I am interested in Machine learning and multi-omics data analysis. My go-to programming language is R.
My Blog List
My Blog List
Loading
Dynamic Views theme. Powered by Blogger. Report Abuse.